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Abstract. While the theory and practice of runtime monitoring are over-
all well developed, in embedded systems, runtime monitoring is not
as common as one would expect. Especially small-scale embedded sys-
tems, which are found in many household devices, are often somewhat
safety-critical and could benefit from the possibility to detect software or
hardware defects that cannot be uncovered with verification alone. While
monitoring frameworks such as RTLola and Copilot are available to ad-
dress this problem, employing them leads to a gap between verification
and runtime monitoring by these frameworks having specialized spec-
ification languages for monitoring, and what can be expressed in them
is incomparable to the capabilities of the temporal logics traditionally
employed in formal verification.
This paper discusses how (linear) temporal logic runtime monitoring for
small-scale embedded systems can be made more efficient and attrac-
tive to the embedded systems practitioner. This includes identifying why
monitoring for traditional temporal logics is somewhat inefficient in soft-
ware, how this problem can be addressed in a low-cost way, and how
runtime monitors can become a more useful component of an embed-
ded system. By providing a way to translate a specification to monitor
code that also tracks the reason for a specification violation, the overall
approach discussed in the paper makes spending developer time on writ-
ing a relatively precise specification of a system to build attractive, which
also helps paving the way to make formal verification for small-scale
embedded systems more common.

1 Introduction

Many real-world systems are too complex to verify directly. They have too many
states, so that we cannot simply build a transition system representation of them
and compare it against some specification. This problem is addressed by several
different approaches in formal methods. They key activity in some of them is
abstracting the design under concern to something more manageable, either by
means of a carefully made abstraction, or by learning such an abstraction and
using the result as a model.

Not all systems lend themselves to obtaining such an abstraction, however,
and in such a case, we have to deal with a relatively complex system. This is
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especially the case when the environment of a system is not fully modeled, but
the environment behavior is crucial for the correctness of a system. In such a
case, we have to trade being able to detect every error (right away) against being
able to analyze a complex system without abstraction, which means observing
system behavior and testing or monitoring it for correctness. In this case, the
system is used in a black-box or gray-box manner without the need for an
abstraction. We can however still utilize a formal specification, so that we can
reason formally about an execution of a system, but not its set of executions.

Testing and monitoring differ by scope and how a system is used. In the
former case, a system (under test) is employed in a testing environment, which
allows to focus on individual aspects of its operation and to observe the system’s
behavior in carefully crafted situations, such as boundary cases. Furthermore,
in testing, relatively expensive analysis techniques can be used for analyzing
the behavior of the system under test, and testing setups can be augmented
with components for tracking the precise nature of a specification violation,
which helps with finding the cause of a specification violation in case it occurs.

Monitoring, on the other hand, is a related but independent activity. Mon-
itoring means to assess the correctness of the system’s behavior by observing
its behavior and raising an alarm whenever a violation of the specification is
witnessed. Monitoring can be used in the scope of testing but is not bound to
it – an efficient monitor can be deployed in the field along with the system
whose correctness we are interested in, so that even violations of properties of
interest that were not found during testing due to missing test scenarios can be
uncovered. In the case of embedded systems, monitoring also allows to identify
erroneous behavior due to hardware defects (e.g., in sensors or actuators) for
which the system’s behavior was not formally verified. The output of a moni-
tor can furthermore be used to influence the system’s operation itself, such as
by the system shutting down in an orderly manner in case of a specification
violation.

The possibilities to also detect specification violations due to unmodelled
causes (such as hardware defects) and to allow the system to react to violations
are unique properties of monitoring among the different approaches to proving
the correctness of a system. Especially for embedded systems of a smaller scale,
monitoring is attractive, as the interaction of such systems with the physical
environment and their hardware-specific software implementations reduce the
possible degree of test automation (when compared to pure software-based
systems). Small-scale embedded systems do not have layers of abstraction
that allow to test their software independent of the hardware. Many required
properties of embedded systems can be represented using temporal logics, and
approaches to temporal logic runtime monitoring have been developed that
yield monitors that can be integrated into embedded systems.

For instance, Havelund and Rosu [21] showed how to translate a linear past
time temporal logic formula into C code that monitors the satisfaction of the
formula when calling the monitor update/step function whenever the propo-
sitions occurring in the formula receive new values. The C code is relatively
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cumbersome to execute due to having many bitwise operations that each take
at least one clock cycle for a microcontroller. This can be avoided by having
the monitor run on a field-programmable gate array (FPGA), where bitwise oper-
ations can execute in parallel and when monitoring the input/output behavior
of an existing system, the FPGA can simply be connected to input and output
to perform the monitoring process [27]. This approach has the drawback that
FPGAs are normally more expensive than the microcontrollers they monitor,
which causes the approach to have a relatively high cost.

While most embedded systems are closed-source and hence statistics on the
adoption of runtime monitoring in embedded systems are difficult to give, it can
still be observed that both in research as well as at industry trade shows, runtime
monitoring for small-scale embedded systems is seldom a topic that is widely
discussed (unlike, e.g., security for embedded systems), despite many runtime
monitoring approaches already being available. This is rather unfortunate, as
it has been noted that a show-stopper to the wider adoption of formal methods
in industry is the need to train engineers in writing and working with formal
specifications [32]. With its unique properties, runtime monitoring could be a
wedge in the door toward greater adoption of formal methods in the embedded
systems industry, which would then also help with paving the way for proof-
based formal methods (such as the combination of learning a system model
from traces and verifying this model against the specification [36]).

In recent years, runtime monitoring frameworks such as Copilot [28] and
RTLola [18] entered the scene, which take runtime monitoring to the next level
by allowing to provide a stream-based specification of the properties to be mon-
itored and having compilation workflows to either C code or FPGA implemen-
tations. They feature operations over stream data as first-class citizens, which
makes expressing complex properties over data feasible. As such, they make
monitoring more attractive, but come with the draw-back that the domain-
specific monitoring languages are less expressive in the temporal behavior of
systems than classical temporal logics such as linear temporal logic (LTL, [29]).
Also, employing monitoring-specific specification languages causes a divide
between runtime monitoring and formal verification (before the deployment
of a system), which is undesirable for establishing more rigorous specification
engineering practices in industry. Arguably, even the existing work on monitor-
ing linear past time temporal logic formulas can be considered to be part of such
a division, as formal verification is frequently done with temporal operators
that look into the future.

So why is it that runtime monitoring with classical (future-time) temporal
logics appears to be under-explored in industry given its benefits? We argue
that there are still two problems that need to be solved to make runtime mon-
itoring for low-cost embedded systems useful. On the one hand, monitors
are surprisingly costly: the amount of computation time of a microcontroller
spent monitoring in software can easily grow larger than the computation time
needed for the core functionality. Conversely, when offloading the monitoring
task to an FPGA, this extra chip can easily be more expensive than the mi-
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crocontroller for the core functionality. On the other hand, for a monitor to be
useful, detecting violations needs to be useful. Without diagnostic information
on how and why a violation occurred, a reported error is hardly useful for im-
proving the design of a system, which is often the reason for applying formal
methods in the first place.

We show in the following how both problems can at least be partially ad-
dressed in a way suitable for very small embedded systems with computing
hardware costs of less than 2 Euros. Starting from linear temporal logic as spec-
ification formalism, we summarize some previously known concepts for the
computation of an online runtime monitor for embedded systems and show
what makes the resulting monitors difficult to apply on small-scale embedded
systems. To address these issues, we present a novel microcontroller temporal
logic runtime monitoring component that is easy to integrate into future mi-
crocontrollers for safety-critical systems, and for which a prototype has already
been produced in silicon. To address the need for the monitor supporting the
debugging of real-world systems, we also show how the problem of automati-
cally capturing debug information with temporal logic runtime monitors can be
addressed in a way that is reasonable under very tight storage space constraints
for trace information, as commonly the case in tiny embedded systems.

2 Related Work

With the focus of this paper on showing why temporal logic monitoring is
difficult on small-scale embedded systems and discussing what can be done
about it, the amount of related work is too big to discuss it in a comprehensive
way. Rather, a (small) selection of existing results that are particularly related
to the following discussion are mentioned below. Runtime monitoring is a core
concept of the research field of runtime verification, for which an introductory
textbook exists [3], as well as a dedicated conference series (RV).

Temporal logics such as linear temporal logic (LTL, [29]) are well-established
for the specification of desired system behavior. LTL reasons over infinite traces,
while in runtime monitoring, we can only observe finite prefixes of a trace. Apart
from defining special LTL semantics for runtime monitoring that reason over
finite traces [20,6], one can solve this problem by defining monitoring as the
problem of continuously checking if the trace of the system observed so far can
be extended to one that satisfies the specification. Doing so lets the LTL semantics
for model checking and runtime monitoring coincide. We call a prefix trace of a
system a bad prefix if it cannot be extended to a trace satisfying the specification.
Monitoring in this semantics amounts to checking if a bad prefix has been
observed, and hence only the safety hull of a property under concern can be
monitored, with relatively few exceptions [16].

Kupferman and Vardi described how to monitor the safety hull of an LTL
property, where the monitor is a finite-state machine of size at most doubly-
exponential in the length of the LTL property [22]. The monitor is structured
in a way amenable to symbolic implementations, which enables, for instance,
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a compact encoding of the monitor as a circuit. Such an encoding can be com-
piled to a circuit for monitoring and this circuit can be implemented in a
field-programmable gate array (FPGA). Due to the fact that FPGAs offer highly
parallel computing in real-time, they are used in many monitoring approaches
(e.g., [27,8,30]). The application of FPGAs for monitoring requires that the
FPGA is physically connected to the signals to be monitored and at the same
time using FPGAs adds to the cost of a system. Also, when the monitored sig-
nals change too fast for the synthesized FPGA implementation to process, only
sampling-based runtime monitoring [10] can be applied.

For embedded systems that employ microcontrollers, the cost of an FPGA
for monitoring can easily exceed the cost of the system to be monitored. De-
ploying a monitor on the microcontroller itself is a more reasonable alternative.
It involves instrumenting [11] the microcontroller code to be monitored so that
the monitor gets informed of events of relevance to the satisfaction of the spec-
ification.

For complex embedded systems that run a real-time operating system, eval-
uating the stream of events for whether it represents a bad prefix can be done in
a separate thread that is regularly scheduled by the real-time operating system
[26]. Not all microcontrollers in embedded systems run real-time operating sys-
tems, though. Especially when their purpose does not require communication
between different software components and when they need to react quickly
to events, scheduling real-time tasks can complicate a design rather than sim-
plifying it. Rather, many simpler embedded systems are programmed “bare
metal”, which gives the system engineer full control over the microcontroller
timing. This observation advocates for integrating the monitor code directly
into the monitored code itself so that it runs synchronously with the code to be
executed [4].

Either way, monitoring needs to be efficient as the overhead of runtime
monitoring for temporal logics can be substantial. Symbolic implementations
of automata for the evaluation of logical formulas, as used in FPGA-based
monitoring, are difficult to translate to efficient microcontroller code as a lot of
“bit fiddling” code needs to be used then (see, e.g., [21]), which leads to a high
number of clock cycles of overhead to the instrumented instructions.

The detection of a specification violation can be used in multiple ways. Apart
from switching the monitored system to a fail-safe mode, detecting a violation
is the starting point to finding out why the system behaved incorrectly. For
instance, Wang et al. [39] presented an approach based on causality analysis,
in which the component responsible for the violation within a bigger system is
identified. Finding this component has also been studied outside of the area of
runtime verification (see, e.g., [5] and the references therein).

In a sense, approaches that identify components that behave incorrectly are
however only the second step to analyzing specification violations. Especially
for more complex specifications, finding out how a specification was violated is
a useful first step. This can for instance be done by highlighting which parts of
the trace contribute to the violation of the specification. Beer et al. [9] employ
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causality to find the important time point/proposition combinations in counter-
examples. They show that determining the minimal number of combinations
needed to explain a violation is NP-hard, but give a polynomial-time heuristic.
The approach is however not applicable to online monitoring as it requires
the complete trace for the analysis. Ferrère et al. [19] provide an alternative
approach that is not based on causality, but is also suitable for metric time
logic and the explanation of violations in infinite (lasso-shaped) traces. The
development of a corresponding online monitoring approach was left for future
work.

The idea to perform runtime monitoring in hardware in order to reduce the
computational cost of runtime monitoring is not restricted to the use of FPGAs
[33,27]. Walters et al. [38] discuss this idea for supervising a microcontroller,
however without a temporal logic specification. Reinmacher et al. [31] propose
the development of a programmable runtime verification component, but focus
on describing the concept rather than refining it to an implementation of such
a component.

3 Linear Temporal Logic Runtime Monitoring on Small-scale
Systems – Step By Step

To illustrate why a straight-forward application of classical temporal logic
runtime monitoring results yields monitors that are relatively inefficient, we
illustrate how they work on an example. The example is then used as motivation
for discussing refinements of the approach.

Full-length monitor code for the example in the following is available from
[17]. We consider a couple of monitor code variants and report on code sizes and
computation times for a 32-bit F446RE microcontroller by ST Microelectronics,
which features an ARM Cortex M4 processor core, 512 kilobytes of program
memory (Flash) and 128 kilobytes of RAM. While it is not actually a tiny system,
its processor core has a useful extra feature, namely a clock cycle counter,
which we employ for comparing the computation times of different monitors.
Computation times for the monitor are taken on an example trace of length 7.

Linear temporal logic: We start with a specification in Linear Temporal Logic
(LTL, [29]), which is a logic over infinite words w ∈ (2AP)ω of which each
character assigns values to a finite set of atomic propositions AP. A word either
satisfies an LTL formula or not. In the latter case, we say that the formula is
violated. Linear temporal logic extends Boolean logic by the temporal operators
G (“globally”), F (“eventually”), X (“next”),U (“until”), and R (“release”). We
refer the reader to [29,22] for a formal definition of LTL.

For the example in the following, we consider monitoring a simple traffic
light at an intersection, which is safety-critical and has temporal requirements.
The traffic light has remotely controlled override signals for ambulance vans.
To keep the example simple, we assume that the system is clocked with a clock
rate of one execution step per second. For every direction, the traffic light has
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red, yellow and green light bulbs, and we assume that the signals shown on
opposite sides of the intersection are always the same. The traffic light controller
has to satisfy four properties:

1. Whenever one of the traffic lights shows yellow, it shows red next. When-
ever a traffic light shows red+yellow, green follows next.

2. After a traffic light shows green, it has to show yellow or green next.
Similarly, after a red light in any direction, the respective traffic light has to
show red or red+yellow next.

3. Only in one direction at a time, the traffic lights may have a yellow or green
light bulb lit.

4. In each direction, an ambulance van override signal can be issued, and
if it keeps being issued for 10 seconds, the traffic light for the respective
direction has to show green after the 10 seconds and stay green until the
signal is turned off again.

The specification has the interesting property that no system can satisfy it
along all possible executions. Ambulance van override signals can be given for
two directions at the same time, and then the traffic light controller would need
to give two green signals in different directions at the same time, which violates
the third property. However, this case may not occur in practice, for instance by
the receiver for the ambulance override signals only allowing one such signal
at a time, and unlike in formal verification, we do not have to model this en-
vironment aspect to avoid that the employed verification approach spuriously
detects the specification to be violated.

To formalize the specification in linear temporal logic, we first need to define
a set of atomic propositions for the system. For simplicity, we assume a four-way
intersection with traffic lights that always have the same bulbs lit in opposite
directions, without separate signaling for cars that wish to turn left. We use
r1, r2, y1, y2, g1, g2 as the propositions for the red, yellow, and green signals for
the two relevant directions, respectively, and the two additional propositions
a1, a2 for the ambulance override signals in these directions. The specification
parts from above can be encoded into LTL as follows:

1.
∧

i∈{1,2}G(¬ri ∧ yi → X(¬yi ∧ ri)) ∧G(ri ∧ yi → Xgi)
2.
∧

i∈{1,2}G(gi → X(gi ∨ yi)) ∧G(ri → X(ri ∨ ¬ri ∧ yi))
3. G¬((y1 ∨ g1) ∧ (y2 ∨ g2))
4.
∧

i∈{1,2}G(ai → X(¬ai ∨ X(¬ai∨︸             ︷︷             ︸
10 times

. . . (giU¬ai) . . .)))

Note that not all aspects of the system’s operation have been formalized,
such as that if a traffic light has its green bulb lit, its other light bulbs have to
be switched off. For runtime monitoring, which we want to formalize next, it
is not necessary to include all such aspects.

Runtime Monitoring of LTL: Runtime monitoring is the process of observing the
execution of a (reactive) system and continuously checking whether the trace
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so far already violates a given specification. Early guaranteed satisfaction is
not considered in this paper. Reactive systems, which continuously interact with
their environment, do not terminate and their execution can be written as an
infinite trace in which each trace element provides information about the current
input/output and the state of the system. For many monitoring tasks, the trace
can be abstracted into a form in which each trace element is an assignment to
a set of Boolean variables AP, which enables the use of LTL to specify desired
system properties. Linear temporal logic is defined on traces of infinite length,
and hence whether a specification is violated is not directly defined for a finite
trace prefix that can be observed at runtime. To avoid introducing a special
semantics for LTL over finite traces, it is common to monitor for bad prefixes of
an trace. Formally, given an infinite word w = w0w1 . . . ∈ (2AP)ω, a bad prefix
w0w1 . . .wi of w (for some i ∈N) has the property that for every w′ ∈ (2AP)ω, we
have that w0 . . .wiw′ violates the specification.

For the traffic light specification that we formalized above, an example bad
prefix is {r1, r2} {r1, y2} {r1, g2} {g1, r2}, as here, a sudden switch from green to
red occurs for the second direction, which violates specification part number 2
above.

So how can we construct software components of embedded systems from
LTL specifications that allow us to detect bad prefixes of the system’s execution?
Kupferman and Vardi [22] describe an automata-theoretic way for doing so that
is based on Büchi automata.

Büchi automata: A Büchi automaton is a tuple A = (Q, Σ, δ,Q0,F) with a finite
set of states Q, an alphabet Σ (which will be a set of valuations of an atomic
proposition set AP in this paper), a transition relation δ ⊆ Q×Σ×Q, a set of initial
states Q0 ⊆ Q, and a set of accepting states F. Büchi automata operate on infinite
words w = w0w1 . . . ∈ Σω. We say that an infinite sequence π = π0π1 . . . ∈ Qω

is a run of A on w if π0 ∈ Q0 and for all i ∈ N, we have (πi,wi, πi+1) ∈ δ. We
say that π is accepting if some state in F occurs infinitely often along π, and the
word w is accepted by A if there exists some accepting run for w and A. The
words accepted by an automaton form its language. We extend the notion of a
run of a Büchi automaton to finite words in the straight-forward way, but note
that it does not make sense to talk about the acceptance of such a run.

It is known how to translate a linear temporal logic formula to a Büchi au-
tomaton of size exponential in the size of the LTL formula [37]. In this context,
the set of words satisfying the LTL property is the language of the Büchi au-
tomaton. For the specification given above (where we take the conjunction of
the specification parts as the overall specification), we can obtain an equivalent
Büchi automaton with 2904 states when using the LTL-to-Büchi translation that
is part of the spot framework [13] (of which we use version 2.12 in this paper).

Runtime monitoring with Büchi automata – first version: A Büchi automaton for
a specification can be used to detect bad prefixes of the specification. For a
first approach, we first need to prune all states from a Büchi automaton A
that cannot occur along an accepting run of a word [12], which is a standard
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optimization step of LTL-to-Büchi translators anyway [34]. Afterwards, we
have that a prefix word w = w0w1 . . .wn is a bad prefix for the language of a
Büchi automatonA if and only if there is no finite run ofA for w [2]. To see this,
consider that there is such a finite runπ. Then it can be extended to an accepting
run for some infinite extension of w (as π can be the beginning of an accepting
run as otherwise the state that is last in π would have been pruned away). On
the other hand, if there is no such finite run π, then there is no infinite run for
any infinite extension of w, which makes w a bad prefix.

This observation allows to perform runtime monitoring in a simple way:
while observing the behavior of the system, a monitor can read the proposition
valuations step-by-step and keep track of in which Büchi automaton states a
run for the prefix trace observed so far can be. Once this state set becomes
empty, a bad prefix has been observed, and the monitor can flag an alarm. We
can compile a Büchi automaton to monitoring code that computes the next state
set from the previous state set and the atomic propositions. To do so effectively,
we group transitions by their predecessor and successor states and compile the
set of characters for which some transition in the group can be taken into some
symbolic expression.

For our running example, the Büchi automaton for the conjunction of the
four properties has 2904 states. Figure 1 shows a part of the resulting monitor
code for our example, which overall has 98303 source code lines. The source
code file is too large to compile to ARM with the GNU C compiler version
7.2.1 (which runs out of memory on a 32 GB RAM computer), both with code
optimization turned on or off.

Runtime monitoring with Büchi automata – deterministic approach: The program
code shown in Figure 1 shows a problem with the simple approach to runtime
monitoring described above, namely that the generated code is quite inefficient.
Since code blocks for different predecessor states of the automaton’s transitions
need to be executed for each step of the monitor, the computation time of a
monitor step is quite long.

A simple way to address this problem is to treat the pruned Büchi automaton
as a non-deterministic safety automaton (so that every state is accepting) and to
determinize this automaton [35,7]. Every state in the determinized automaton
is then labeled by the set of states in the original automaton in which a run can
be in. Whenever the state labeled by the empty set is reached in a run of the
determinized automaton, this constitutes having read a bad prefix.

In our running example, determinization (and performing exact automaton
minimization of the result) actually decreases the the number of states to 2816.
For tracking the state, only a single integer variable needs to be stored in the
microcontroller’s RAM. The GNU C compiler again fails to compile the result-
ing monitor code due to running out of memory when code optimization is
turned on. Without code optimization, the resulting code size for our example is
2434380 bytes, which is too large for small and medium-sized microcontrollers.
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/* State storage information */
uint8_t inState0 = 1;
uint8_t inState1 = 0;
...
uint8_t inState2903 = 0;

/* Monitor step/update function */
int monitor(uint8_t r1,uint8_t y1,uint8_t g1,uint8_t r2,uint8_t y2,uint8_t g2,
uint8_t a1,uint8_t a2) {
uint8_t nextState0 = 0;
...
uint8_t nextState2903 = 0;
if (inState0){
if (!g1&&!y1&&!g2&&!y2&&!a1&&!a2&&!r1&&!r2) nextState0 = 1;
if (!g1&&!y1&&!g2&&!y2&&!a1&&!a2&&!r1&&r2) nextState1 = 1;

...
if (inState2903){
if (g1&&!y1&&!g2&&!y2&&!a1&&!a2&&r1&&r2) nextState75 = 1;
if (g1&&!y1&&!g2&&!y2&&a1&&!a2&&r1&&r2) nextState2679 = 1;

}
inState0 = nextState0;
...
inState2903 = nextState2903;
if (inState0) return 0;
...
if (inState2903) return 0;
return 1; /* Reporting a violation */

}

Fig. 1. Some excerpts of a runtime monitor code based on a single Büchi automaton

Runtime monitoring with Büchi automata – fragmenting the specification: A way to
generate smaller monitoring code is to build four separate monitors for each of
the four properties in the running example, and monitoring them separately.
This means that we build non-deterministic Büchi automata for each of them
and generate the same type of code as for the first monitor version, once for
each automaton. If and when at runtime, any component monitor reports a
violation, the joint monitor reports a violation.

This approach leads to more compact monitor code, requiring only 27024
bytes of code size, which now fits the program memory of the example mi-
crocontroller. The four Büchi automata built for this monitor have 147 states
overall. On the short example trace, we find that the code needs 2907 clock
cycles on average per monitor step for its execution.

Runtime monitoring with universal automata: The observation from the previous
variant, namely that the monitor became smaller after translating the specifica-
tion parts to automata separately, leads to the question of how far the idea can be
pushed. Is there perhaps a way to decompose the specification into many very
small conjuncts? On an automata-theoretic level, this question has a positive
answer in the form of universal automata [23]. In a nutshell, the idea in universal
automata over infinite words is that every infinite run of the automaton for a
word needs to be accepting for the word to be accepted by the automaton.

In fact, every LTL property can be translated to an equivalent universal
co-Büchi automaton for the specification. The co-Büchi acceptance condition
in this context defines that runs for which states in the automaton’s F set
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q0

y1 g1 ∨ y2 g2

q⊥

y1y2 ∨ y1g2 ∨ g1y2 ∨ g1g2

q1

r1y1y2g2 y1 g1 ∨ g1 g2 y2

q9 q10 q19. . .

a1 (y1 g1 ∨ y2 g2 ) a1 a1 a1

a1 g1

a1g1

true

. . . . . .

. . . . . .

Fig. 2. A part of the universal co-Büchi automaton for the specification of the running ex-
ample. Rejecting states are doubly-circled. It can be observed that some transition labels
are needlessly complicated as the focus of the LTL-to-Büchi translator is on minimizing
the number of states rather than the simplifying the transition labels.

(which are then called the rejecting states) are visited only finitely often are
accepting. Universal co-Büchi automata for a specification consisting of many
conjuncts often look more structured than non-deterministic Büchi automata
for the same language, as the different states in such automata keep track of
different requirements on the rest of the word in order for it to be accepted. A
sub-class of universal co-Büchi word automata are universal very weak automata,
which capture exactly those temporal properties that are expressible in LTL as
well as computation tree logic (CTL) with universal path quantifiers, where in
the latter case, we consider the satisfaction of the property along all paths of a
computation tree [25]. In fact, the specification from above falls into this class,
and there exists a specialized translation procedure from a subset of LTL into
universal very weak automata [1].

Since when working with universal automata, the automaton rejects a word
if any trace violates the specification, we need to modify what the monitor code
does. We still need to track in which states a run of the automaton can be.
However, to detect bad prefixes with universal automata, we need to check
if for the respective current state combination Q′, every suffix word has a
rejecting run from one of the states in Q′. For a given universal automaton,
finding these state combinations is a model checking problem that can be
solved upfront when generating the monitor. However, when the specification
is simple enough, these state combinations are often exactly the ones containing
a state that has an empty language, i.e., one for which when changing the
initial states of the automaton to only that state, the language of the automaton
becomes empty. A simplification at the cost of completeness (i.e., we may miss
violations in some cases) is to refine the monitoring problem to be detecting if
some run of the universal automaton has already reached such a state with an
empty language.
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Our specification in the running example translates to a universal very weak
automaton using spot 2.12 even without the specialized translation procedure
from [1] and is simple enough so that detecting a bad prefix by checking if the
state with the empty language has been reached is sound and complete. A part
of the universal automaton is shown in Fig. 2, and the complete automaton has
30 states.

The resulting monitor code needs 3136 bytes of program memory and takes
549 clock cycles on average to execute per monitor step. We note that the
program code is small enough to fit into the program memory of low-cost
microcontrollers, which typically have 16-128 kilobytes of this memory type. A
particular advantage of monitoring with universal automata is that the monitor
code size does not grow superlinearly with the number of monitored properties.
In case the main functionality of the microcontroller needs most of the program
memory, we can prioritize the properties to monitor in order to fill the remaining
memory with monitor code for a selection of the properties.

4 Keeping Track of Specification Violation Reasons

For the example in the previous section (for which all details and the translation
procedures to monitors are available in [17]), we used results from the literature,
namely on runtime monitoring using non-deterministic Büchi automata [12],
deterministic automata [35], and on universal co-Büchi automata, where in the
last of these cases, we adapted the monitoring approach from [12] to account
for the complemented branching and acceptance conditions. The Python script
for compiling the monitors in all considered variants only has 435 lines of code,
showing that monitors of all considered types can easily be built.

While the monitors are already usable for embedded systems (when adding
calls to the monitor step function in the main program code manually), they
leave room for improvement in several directions, of which we want to address
two in this paper.

First of all, what happens if there is a violation? The monitor detects this,
and the embedded system implementation can then react to the violation, for
instance by shutting down the system’s service. For systems in a prototyping
stage and systems that can report specification violations back to the manufac-
turer, recording the reason for a violation would also be useful, so that after a
violation, debugging and continuous engineering activities can be supported
with a suitable starting point. Recording complete execution traces is however
out of question, as microcontroller memory is extremely limited.

We propose an alternative approach that makes use of the structure of
universal very weak automata, as we have in the running example above. An
automaton is said to be very weak (or 1-weak) if all loops along the transitions
in the automaton are self-loops [25]. For universal such automata, the different
possible paths that runs can take through the automaton constitute different
ways of violating the specification, where a path defines the states along a run
without state repetitions. For instance, the path q0 → q1 → q⊥ in the automaton
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in Figure 2 represents the case that after red+yellow is shown for the traffic light
in direction 1, green is not shown right afterwards (where the actual transition
conditions happen to be more complex in the automaton so that this path cannot
be taken when certain other specification violations happen at the same time).
Similarly, a path from q0 to q⊥ via q9 → . . . → q19 constitutes a specification
violation by the ambulance van override signal not working correctly. In this
case, however, the number of trace characters between leaving q0 and entering
q⊥ along a run is not bounded, as the run may stay in q19 arbitrarily long.

Given that an embedded system has little memory, which information about
a trace should be recorded? Surely, the concrete path from q0 to q⊥ should be
recorded in order to explain how the specification was violated. The fact that
in universal very weak automata, there are only finitely many different paths
makes this possible. But we can actually record more: whenever a run moves
forward along a path in the automaton, it intuitively moves closer towards
violating the property (if the respective run ever reaches q⊥). The values of the
propositions along such transitions closer to q⊥ then provide evidence on why
the specification violation occurred.

For instance, when recording the proposition values for a violation along
the path q0 → q1 → q⊥, the values of a1 and a2 tell the system engineer whether
an ambulance van override signal was involved in the violation or not, which
helps pinpointing the cause of the violation. Similarly, if a violation via the path
q0 → q9 → . . .→ q19 → q⊥ is found and the proposition values along a violating
run are recorded whenever the run switches states, the recorded information
shows the (observable) traffic light states before stabilizing the green light for
direction 1, and additionally how this stabilization was broken.

On a technical level, recording the proposition valuations along a path can
be implemented by augmenting the monitor code variables tracking for each
automaton state if a run can be in the state with a trace recording buffer. The
buffer information needs to contain the prefix path and the proposition valua-
tions for this prefix path. Whenever there exist multiple prefix runs leading to
a state, an arbitrary of these is used for the stored buffer information.

While the choice to track proposition valuations when switching states in
the universal automaton is a heuristic, and hence not always the most useful
trace parts are recorded in this way, this heuristic has the advantage that the
needed buffer sizes can be computed upfront and are constant, and we track
proposition valuations at well-defined time points that have a clear reason
for being potentially interesting, without a need for the engineer to specify a
violation analysis strategy. In the example specification from above, we would
need 130 extra bytes of RAM for storing the trace information for all states
as well as persistent storage of 12 bytes for storing the trace information of an
actual specification violation for later retrieval by the application engineer. This
is even small enough for the low amount of EEPROM memory that low-cost
microcontrollers have (such as the 512 bytes of EEPROM of the low-power
STM32L010RB microcontroller by ST Microelectronics).
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Finally, we note that if the specification automaton is not actually very
weak, we can record the proposition valuations of a run at the time points at
which it switches between strongly connected components of the automaton.
Furthermore, it needs to be noted that if the universal automaton has bad
prefixes along which a state with an empty language is not reached for some
run, no violation reason can be recorded for such a case.

5 A Specialized Microcontroller Component for Temporal
Logic Runtime Monitoring

The monitor based on universal automata built in Section 3 needs 549 clock
cycles on average per monitor step on the example trace. While this is substan-
tially less than for the other monitor types that we looked at, the number of
cycles is still relatively large, and for simple applications, the overall monitor-
ing overhead can easily exceed the number of clock cycles used for the core
functionality of the system. This is caused by the many Boolean operations
performed on the proposition values, for which even an optimizing compiler
can only cache a few. Each such Boolean operation needs at least one clock cycle
(as simple microcontrollers cannot parallelize basic operations).

This efficiency problem can be addressed by hardware support for temporal
logic monitoring. Microcontrollers often have many components apart from a
processor core and memory, and they communicate via one or more shared
busses, to which a runtime monitoring component could be connected. As a
proof of concept, we implemented such a component. The component was also
accepted for fabrication with the Google-sponsored Open MPW program [15],
and we describe its main ideas in the following.

The starting point of our monitoring component is the observation that
monitor program code, such as the one in Figure 1, can be represented as a
combinatorial circuit, which takes as input the current proposition valuation and
the previous values of the single-bit variables representing in which states a
run of the universal automaton can be, and outputs the next values of these
state variables (of which one represents if a violation has been observed so
far). The circuit can be minimized based on the reachable state combinations
in the automaton as careset, for instance with the approach by Lee et al. [24].
A number of flip-flops looping back the state variables then complement the
combinatorial circuit to a runtime monitor.

In order to simulate the behavior of such a combinatorial circuit, we do
not have to perform the Boolean operations in a sequential way. Rather, we
can group multiple circuit gates together and compute their output values
simulataneously by table lookups. Figure 3 depicts the idea. We split simulating
the circuit into a sequence of table lookups, each using one or more input bits
and producing one or more output bits. At the end of a sequence of table
lookups, we obtain the new values for the state variables.

The runtime monitoring component, available under an open source
license from https://github.com/progirep/temporal_runtime_monitor_

https://github.com/progirep/temporal_runtime_monitor_for_caravel
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LUT 1

LUT 2

Fig. 3. Graphical depiction of the idea to map circuit elements to lookup tables (LUTs).
The example circuit does not originate from an actual monitoring problem.
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memory
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memory
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Fig. 4. The temporal logic runtime monitoring component in hardware. The left hand-
side shows the utilization of the user space area on the Caravel SoC, where the runtime
monitoring component only needs a small part of it. The right-hand side shows a photo
of the manufactured system on chip, which includes the user space area at the top.

for_caravel, was designed to interface to the Wishbone bus of a Caravel System-
on-chip (SoC) [14]. New proposition values can be provided to the component
by a single 32-bit write access to the bus, and the component computes the re-
sult of the monitor step function while the processor core can already continue
with its main functionality computation. The component has a 64-bit main
state register that is continuously updated with each table lookup. Every table
lookup takes 8 clock cycles, in which the following actions are performed:

1. A state register bit selection for the input to the lookup table as well as a
lookup table starting address are read from a 1 kilobyte large control memory
block.

2. The state register bits selected are extracted from the state register using a
bit extract [40] operation.

3. Using the extracted bits as table row selection and the lookup table starting
address, the table lookup is performed.

https://github.com/progirep/temporal_runtime_monitor_for_caravel
https://github.com/progirep/temporal_runtime_monitor_for_caravel
https://github.com/progirep/temporal_runtime_monitor_for_caravel
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4. Another bit mask is read from the control memory, and the state register
bits are compressed using another bit extract operation on the bit mask.
The result of the table lookup from the previous step is then added to the
state register content.

We implemented the component with 2 kilobyte lookup table memory, and
it was manufactured in a 130 nanometer feature size IC production process.
The right-hand side of Figure 4 shows the resulting chip, consisting of the
SoC processor and memory at the bottom and a user space area for the added
functionality of the SoC at the top. The user space area measures approximately
10 square millimeters, and only a small part of it was actually needed for the
monitoring component. A design drawing of the user space area is also shown
on the left-hand side of the figure.

A control register of the component stores information on the number of
propositions used as well as the number of lookup tables. The component
also allows write access to its memories to fill the them with the configura-
tion needed to monitor for the specification of interest. An open-source com-
piler for encoding a circuit and a split of the circuit into lookup tables into
the configuration encoding needed by the component is available at https:
//github.com/progirep/monitor_compiler_for_caraval_monitor. How to
automatically optimize such a split based on a given monitoring circuit is left
for future work. For the specification from the running example, a manual split
into 7 lookup tables yields an encoding that needs 1504 bytes of lookup table
memory and 144 bytes of control memory. As the monitoring component needs
8 clock cycles per lookup table (plus 8 cycles to filter the final state register con-
tent to those bits needed for its next step), a monitoring step of this component
takes fewer than the 549 cycles needed by the software monitor based on a
universal automaton.

We experimentally validated that the component actually works in silicon,
except that the memory blocks, which were taken off-the-shelf, are unable to
hold their values. When running the component with the randomly initialized
but stable values of the memories, the results match those from a high-level sim-
ulation run on the memory contents read out from the component, indicating
that when replacing the memory blocks or otherwise improving the stability
of their operation, we obtain a working temporal logic runtime monitoring
microcontroller component.

In its current version, the runtime monitoring component does not feature
the specification violation information tracking approach from Section 4. The
component is however not actually restricted to runtime monitoring, but can
also be used for other computations that map nicely to simulating a sequential
circuit.

6 Conclusion

In this paper, we gave a quick run-through of some existing results on compiling
temporal logic specifications to runtime monitoring code. The focus was on

https://github.com/progirep/monitor_compiler_for_caraval_monitor
https://github.com/progirep/monitor_compiler_for_caraval_monitor
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using future-time temporal logic, as common in verification, while targeting
tiny systems (i.e., embedded systems with a low-cost microcontroller). It should
be noted that there is a large volume of related work that could not be discussed,
such as for instance on offline runtime monitoring, multi-valued semantics
for monitoring, automatic code instrumentation for monitoring, and runtime
monitoring in a separate thread in more complex embedded systems.

In our run-through, we focused on closing the gap between formal verifi-
cation and runtime monitoring by employing a specification formalism that is
common in formal verification for runtime monitoring as well. We discussed
two ways for making runtime monitoring more useful, hopefully encouraging
system designers to write formal specifications more often. In particular, we
showed how tiny systems can record information about a specification vio-
lation without the engineer having to declare which trace information is to
be recorded. Furthermore, we described an in-silicon temporal logic runtime
monitoring component that can be integrated into future microcontrollers for
light-weight monitoring.

Multiple directions of future work can be identified from the discussions
and results in this paper. For instance, general purpose tools for encoding com-
putation that is easy to represent as a circuit to efficient program code to be
executed by regular processors can make runtime monitoring on such pro-
cessors more efficient. Then, automaton minimization approaches that reduce
the sizes of transition labels of universal co-Büchi automata can also make
monitors built from them more efficient to execute. For runtime monitoring
in hardware, an approach for optimally partitioning a combinatorial circuit
into a sequence of lookup tables is also needed. Finally, a monitoring approach
that uses regular linear time temporal logic for specifications while adding a
monitoring-specific formalism that allows the engineer to define which run-
time information is most useful for debugging specification violations may
make runtime monitoring more attractive for debugging the early versions of
embedded systems in the field.
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39. Wang, S., Geoffroy, Y., Gößler, G., Sokolsky, O., Lee, I.: A hybrid approach to causality
analysis. In: 6th International Conference on Runtime Verification (RV). Lecture
Notes in Computer Science, vol. 9333, pp. 250–265. Springer (2015)

40. Wolf, C.X.: Reference hardware implementations of bit extract/deposit instructions
(2017), https://github.com/cliffordwolf/bextdep

https://github.com/cliffordwolf/bextdep

	Efficient Temporal Logic Runtime Monitoring for Tiny Systems

